Simultaneous Bragg and diffuse scattering data collection from single enzyme crystals

Andrew Van Benschoten
ALS Diffuse Scatter Workshop
10/9/13

Protein function requires correlated motion

Lysozyme

Hinge bending

GroEL

Subunit rotation

Rye et.al (1999)

Small proteins

Large complexes

Diffuse scattering reveals correlated motions

...and other crystal imperfections

...and other crystal imperfections

Protein function requires correlated motion

Lysozyme

Hinge bending

GroEL

Subunit rotation

Rye et.al (1999)

Small proteins

Large complexes

Room-temperature crystallography reveals catalytic Cyclophilin A conformations

CypA major/minor conformation

Fraser et.al (2009)

Room-temperature crystallography reveals catalytic Cyclophilin A conformations

Phe 113

CypA major/minor conformation

100K (1.4Å)

Fraser et.al (2009)

Room-temperature crystallography reveals catalytic Cyclophilin A conformations

CypA major/minor conformation

100K (1.4Å) 288K

~60x decrease in NMR dynamics

~60x decrease in NMR dynamics

~68x decrease in catalysis

This is precisely what diffuse scatter could measure!

This is precisely what diffuse scatter could measure!

...if signal to noise was infinite

Bragg crystallography yields degenerate models

Bragg crystallography yields degenerate models

Both models have identical Bragg diffraction!

Bragg crystallography yields degenerate models

Model #1 (correlated)

Model #2 (anti-correlated)

Both models have identical Bragg diffraction!

Diffuse scattering patterns are nondegenerate!

Diffuse scattering patterns are nondegenerate!

Model #1 (correlated)

Model #2 (anti-correlated)

Diffuse scattering patterns are nondegenerate!

Diffuse scatter can be collected on a variety of detector platforms

Advanced Light Source
Charge-coupled device area detector

Alternate collection of Bragg frames and diffuse frames (1°/0.1° oscillation)

Crystal translation during rotation

Stanford Synchrotron Radiation

<u>Lightsource</u>

PILATUS 6m detector

Simultaneous collection of Bragg/ diffuse frames (fine phi slicing)

Crystal translation during rotation

Diffuse scatter maps are created using LUNUS

CypA diffuse scatter map

Phenix calculates diffuse scatter maps from structural ensembles

Structural ensemble

Get_struct_fact_from_md.py

3D diffuse map

Normal mode motions in CypA unit cell produce unique diffuse intensity

Normal mode motions in CypA unit cell produce unique diffuse intensity

Normal mode motions in CypA unit cell produce unique diffuse intensity

Next step: statistical comparisons

I out of slide

Next step: statistical comparisons

I out of slide

Next step: statistical comparisons

Pearson Correlation Coefficient?

I out of slide

Next step: statistical comparisons

I out of slide

Diffuse scattering might probe links between correlated side chain motions with enzyme catalysis

Protein function requires correlated motion

Lysozyme

Hinge bending

GroEL

Subunit rotation

Rye et.al (1999)

Small proteins

Large complexes

Proteasome allostery allows for multiple functions

Cell Cycle

Cell homeostasis

Apoptosis

Differentiation

Immune Response

Cell signaling

Splettstoesser (2006)

Proteasome allostery allows for multiple functions

αL81A

NMR reveals protein conformational exchange

NMR reveals protein conformational exchange

NMR reveals protein conformational exchange

αL81A

T20S mutations alter degradation product ratios

Diffuse scattering can help us determine the mechanism of the T20S allosteric network

T20S proteasome lacks highresolution crystal data

T20S proteasome lacks highresolution crystal data

2.6Å diffraction...

Significant diffuse scattering at mid/ low resolutions for proteasome

Significant diffuse scattering at mid/low resolutions for macromolecular machines

Photosystem II (4.2Å)

Future T20S investigation requires data and motional models

- We need complete diffuse maps of WT, L81A/V proteasome
- Maps will be fit with predictive models of proteasome allostery (TLS)

Summary

- 1. Correlated protein motion underscores enzymatic function
 - Conversion of sidechains is rate-limiting for catalysis
 - Can be determined by room temperature crystallography, CONTACT
- 2. Allosteric mechanism transmits data 80Å in T20S proteasome
 - Co-linear chemical shift perturbations suggest correlated motions
- 3. Diffuse scatter is present at low to medium resolution
 - Currently we can collect data at ALS, SSRL
 - How can we merge data across multiple crystals?
 - What's the effect of cryo-cooling?
- 4. Diffuse scatter distinguishes between models with identical Bragg data
 - How do we go from diffuse intensity to models of motion?
 - What are the different motions on different length-scales?